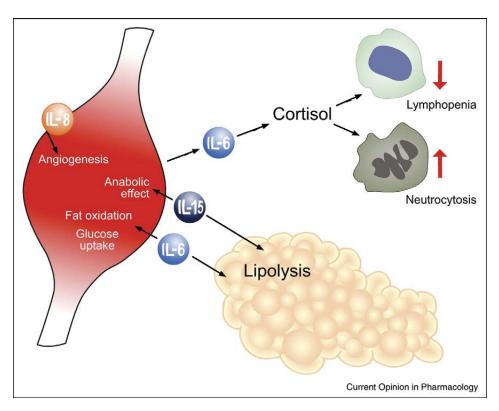
Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training

Frode Norheim, Truls Raastad, Bernd Thiede, Arild C. Rustan, Christian A Drevon, and Fred Haugen

University of Oslo, Department of Nutrition

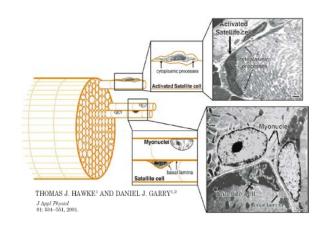

American Journal of Physiology Endocrinology and Metabolism, 2011 Aug 9. [Epub ahead of print]

Physical activity & health

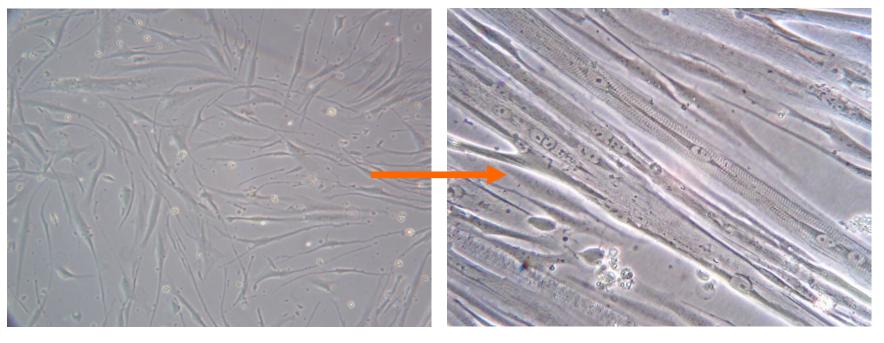
Exercise offers protection against chronic disorders like:

- CVD; Thompson ATVB 2003, 23, 1319-1321
- Obesity; Catenacci & Wyatt Nat. Clin. Pract.
 Endocrinol. Metab 2007, 3, 518-529
- T2D; Knowler et al. NEJM 2002, 346, 393-403
- Osteoporosis; Gass & Dawson-Hughes Am J Med 2006,
 119, S3-11
- Dementia; Lautenschlager et al. *JAMA* 2003, **300**, 1027-1037
- Depression; Martinsen Acta Psychiatr Scand Suppl 1994, 377, 23-27
- Cancer; WCRF report 2007

Proteins secreted from the muscle

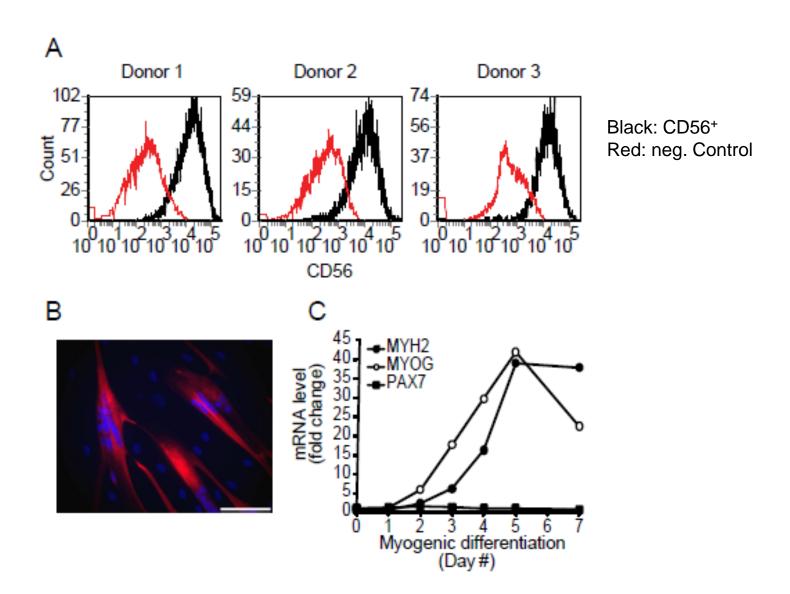


Aims:

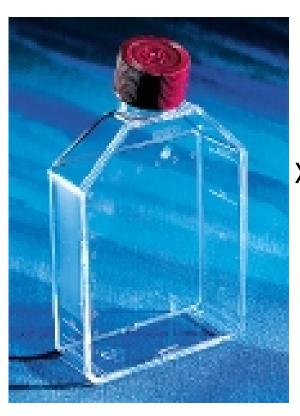

- 1) Characterize proteins released from cultured human myotubes
- 2) Examine the effect of strength training on expression of secreted muscle proteins

Nielsen R et al, Curr Opin Pharmacol, 2008

Differentiation of cultured human myotubes

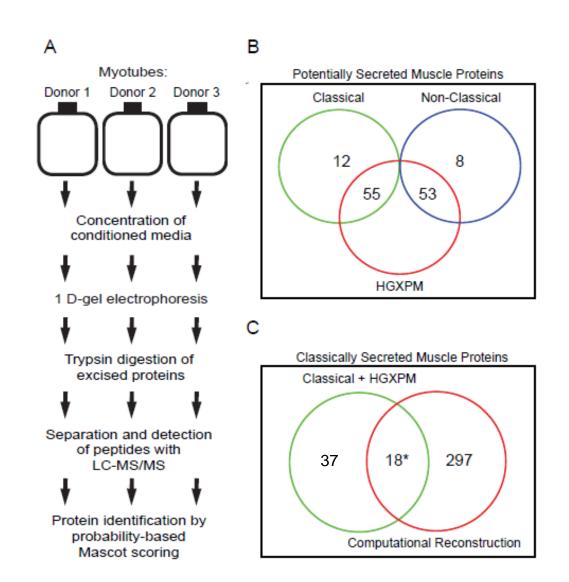


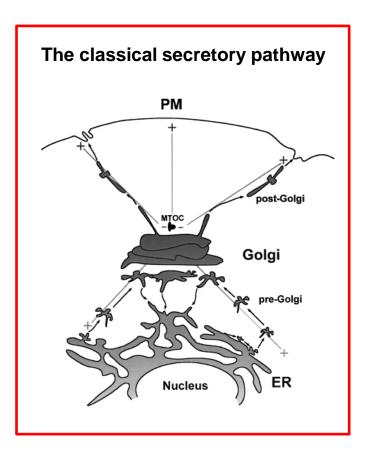
7 days of differentiation



Myoblasts Myotubes

Characterization of isolated human myoblasts

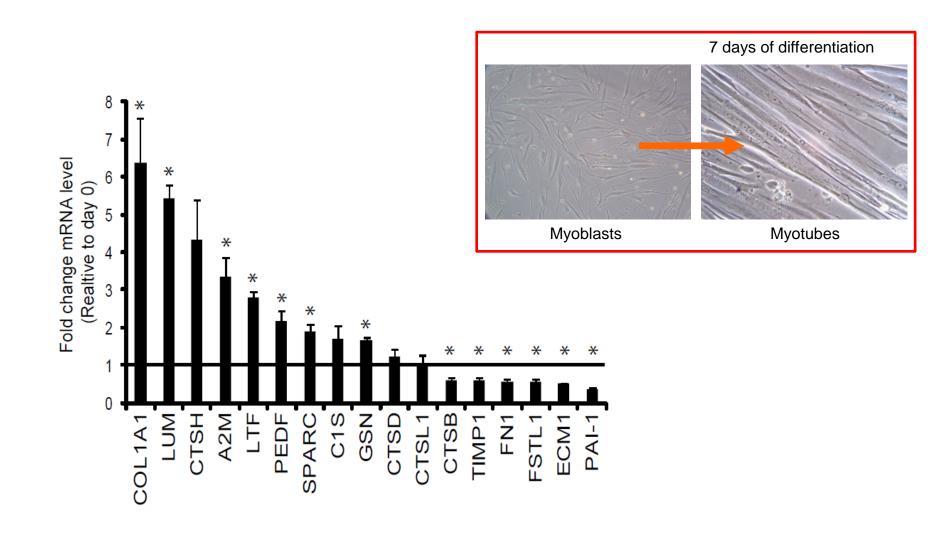

Proteome analysis of conditioned media



X 3 donors

- Three 175 cm² flasks confluent with myotubes
- Collected media after 6 hours incubation
- Concentrated media by spin colums
- Analyzed by 1-D gel and Mass spectrometry

Identification of proteins secreted from cultured human skeletal muscle cells



"Classically" secreted proteins identified – mRNA expression

	~ b	3 eC	2	
QM^a	Scoreb	MW ^c	Myotubes: mRNA ^d	VL: mRNA
28, 16, 11	418, 251, 188	35	3.2502	0.1498
11, 5, 3	214, 74, 50	139	0.5368	0.0022
7, 4, 3	105, 58, 51	78	0.0005	0.0011
7, 2, 2	185, 59, 53	163	0.0196	0.0817
7, 2, 2	131, 54, 33	38	0.0966	0.0190
6, 3, 2	212, 48, 68	86	0.3438	0.2232
1, 1, 1	71, 65, 50	37	0.0303	0.0045
8, 2	239, 41	46	0.2952	0.1836
6, 4	149, 155	45	0.7050	0.0006
5, 2	171, 39	28	1.2771	0.1332
2, 2	117, 63	23	0.6781	0.0127
2, 1	92, 58	262	0.6384	0.0356
1, 1	69, 45	77	0.1409	0.0452
1, 1	55, 50	38	0.1179	0.0545
5	69	38	0.7021	0.0396
5	149	17	0.0001	ND
3	38	35	0.1642	0.0192
1	39	61	0.0846	0.0028
	28, 16, 11 11, 5, 3 7, 4, 3 7, 2, 2 7, 2, 2 6, 3, 2 1, 1, 1 8, 2 6, 4 5, 2 2, 2 2, 1 1, 1, 1 5 5	28, 16, 11	28, 16, 11	28, 16, 11

mRNA expression of secreted proteins during myogenesis


Strength training

- Strength training intervention lasting 11 weeks
 - Muscle biopsies from vastus lateralis (n = 10) and trapezius (n = 7): baseline and 11 weeks
- RT-PCR
- RPLPO was used as endogenous control
- We compared the relative gene expression after 11 weeks of strength training with the expression on baseline: Fold Change

Changes in skeletal muscle mRNA levels of secreted muscle proteins in strength training individuals

Protein name	M. vastus lateralis	M. trapezius	
Collagen alpha-1(I) chain	5.2 (3.7-14.9)*	43.4 (3.9-139.5)*	
Secreted protein, acidic and rich in cysteine	2.9 (1.7-4.9)*	9.6 (3.2-18.8)*	
Plasminogen activator inhibitor 1	2.6 (1.1-7.8)	4.7 (2.5-18.5)*	
Lumican	2.5 (1.7-3.7)*	4.3 (1.1-11.4)*	
Tissue inhibitor of metalloproteinase 1	2.1 (1.3-3.6)*	3.0 (1.1-10.3)*	
Follistatin-like 1	1.7 (1.2-3.1)*	2.6 (1.0-6.3)*	
Fibronectin 1	1.8 (1.4-2.9)*	2.5 (1.2-8.0)	
Complement C1s subcomponent	1.8 (1.0-2.2)*	1.7 (1.2-6.5)	
Extracellular matrix protein 1	1.8 (1.0-2.4)*	1.9 (1.4-4.6)*	
Alpha-2-macroglobulin	1.8 (0.9-2.2)*	1.9 (1.1-3.0)	
Gelsolin	1.5 (0.9-2.1)*	1.7 (1.4-2.9)	
Pigment epithelium-derived factor	1.4 (1.1-1.7)	1.8 (1.7-3.0)*	
Cathepsin B	1.3 (1.1-1.7)*	1.5 (1.0-2.4)*	
Lactotransferrin	1.5 (0.7-2.3)	1.7 (0.8-2.2)	
Cathepsin D	1.3 (1.1-1.7)	1.8 (1.1-2.2)*	
Cathepsin L1	1.2 (0.8-1.3)	1.5 (1.1-1.8)*	
Cathepsin H	1.1 (0.6-1.8)	1.2 (1.0-2.0)	

SPARC is a secreted muscle protein regulated by strength training

Conclusions

- We have identified 17 muscle secretory proteins which is secreted from cultures of human muscle cells and expressed in human muscle biopsies (m. vastus lateralis and m. trapezius)
- Compared to baseline, strength-training significantly increase expression of several different muscle secretory proteins
- By defining the human skeletal muscle secretome in vitro, novel responses of skeletal muscle to strength training can be identified in vivo

Acknowledgement

- Christian A. Drevon (UiO, Department of Nutrition)
- Fred Haugen (UiO, Department of Physiology)
- Truls Raastad (Norwegian School of Sport Sciences)
- Arild C. Rustan (UiO, Department of Pharmaceutical Biosciences)
- Bernd Thiede (UiO, The Biotechnology Centre of Oslo)