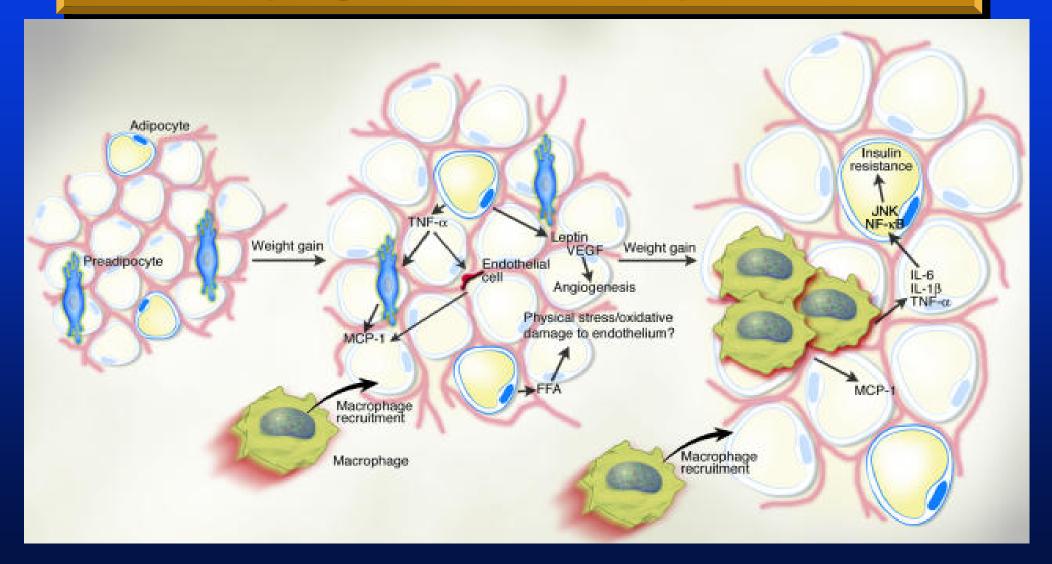
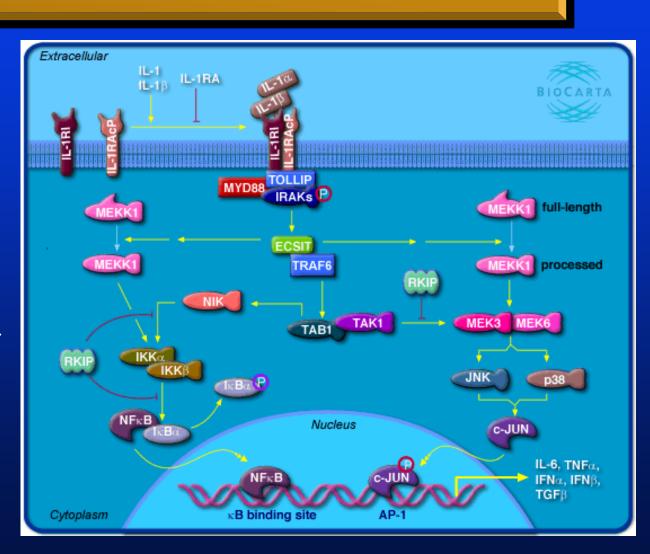
Obesity, Diabetes & Inflammation

Inflamed adipocyte secretome – proteomic signatures


Helen M. Roche,
Nutrigenomics Research Group,
UCD Conway Institute,
University College Dublin,
Ireland


Obesity is a pro-inflammatory state Macrophage infiltration in adipose tissue

IL-1RI Mediated Inflammation, Obesity & IR

- •IL-1β secreted by macrophages & dendritic cells
- •IL-1β and IL-1α bind & activate the IL-1 Receptor I (IL-1RI)
- •IL-1Ra also binds IL-1RI but has no intrinsic activity
- •Activation of IL-1RI results in activation of IKK-NFκB complex & MAPK pathways
- Positive effects with rIL-1Ra on pancreatic β-cell function
- •NLRP3 Inflammasome priming & activation of IL-1β by fatty acids

3244 DOI 10.1002/pmic.200800761 Proteomics 2009, 9, 3244–3256

RESEARCH ARTICLE

Attenuation of inflammation and cellular stress-related pathways maintains insulin sensitivity in obese type I interleukin-1 receptor knockout mice on a high-fat diet

Baukje de Ross^{1*}, Vanessa Rungapamestry^{2*}, Karen Ross¹, Garry Rucklidge¹, Martin Reid¹, Gary Duncan¹, Graham Horgan³, Sinead Toomey², John Browne², Christine E. Loscher², Kingston H. G. Mills⁴ and Helen M. Roche²

- ¹ Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
- Nutrigenomics Research Group, UCD Conway Institute, School of Public Health & Population Science, University College Dublin, Dublin, Ireland
- ³ Biomathematics and Statistics Scotland, Rowett Research Institute, Aberdeen, UK
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland

	C57BL6 High fat diet (n=8)	IL-1RI High fat diet (n=8)
Initial Weight (g)	27.575 (0.479)	*24.575 (0.381)
Final Weight (g)	47.75 (0.381)	47.2 (1.81)
EAT weight (g)	0.432 (0.149)	*0.726 (0.299)
Glucose (mmol/L)	13.570 (0.259)	*9.549 (0.614)
Insulin (pmol/L)	349.873 (40.735)	*240.836 (32.139)
нома	215.789 (39.715)	*106.074 (14.926)
Quicki	0.284 (0.04)	*0.335 (0.036)
TAG (mmol/L)	0.855 (0.067)	*0.732 (0.064)
Cholesterol (mmol/L)	4.121 (0.517)	3.882 (0.661)
NEFA (mmol/L)	0.696 (0.017)	*0.430 (0.032)
Adiponectin (ng/ml)	7665.6 (609.8)	*9609.5 (833.08)
IL-1 (pg/ml)	27.46 (7.81)	28.56 (5.93)
IL-6 (pg/ml)	1454.9 (82.87)	*737.67 (80.81)
TNFα (pg/ml)	65.65 (7.36)	*16.3 (2.9)

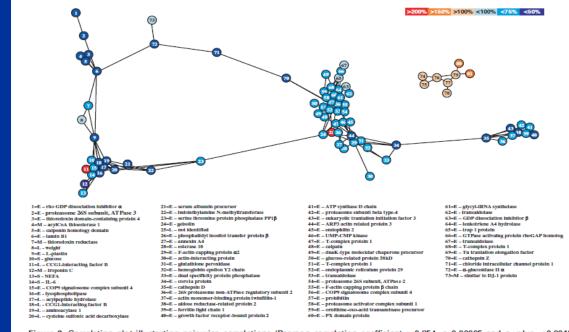
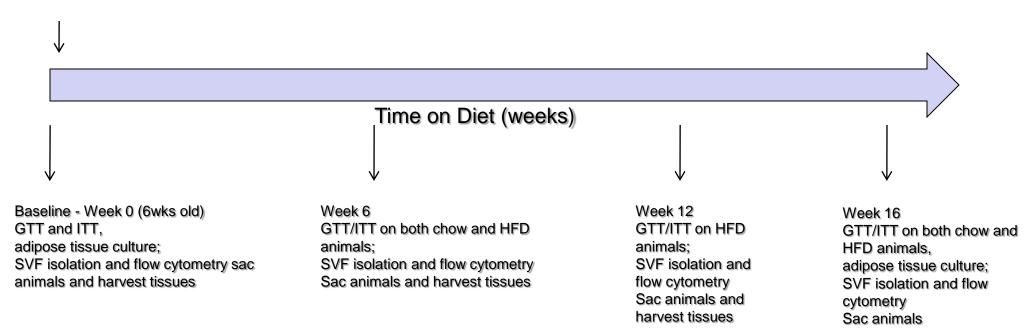


Figure 2. Correlation plot illustrating pair-wise correlations (Pearson correlation coefficient > 0.854, p<0.00005 and q-value < 0.00121) between plasma measurements and adipose, hepatic and skeletal muscle tissue proteins, which were significantly altered in IL-1RI^{-/-}, compared with control mice, after a high-fat diet for 16wk. Protein expression in IL-1RI^{-/-} mice is expressed as a percentage of that in control mice, with red or blue shaded nodes denoting significant up- or down-regulation in IL-1RI^{-/-} mice, compared with controls, respectively. E = epididymal adipose tissue, L = liver, M = muscle, P = plasma.

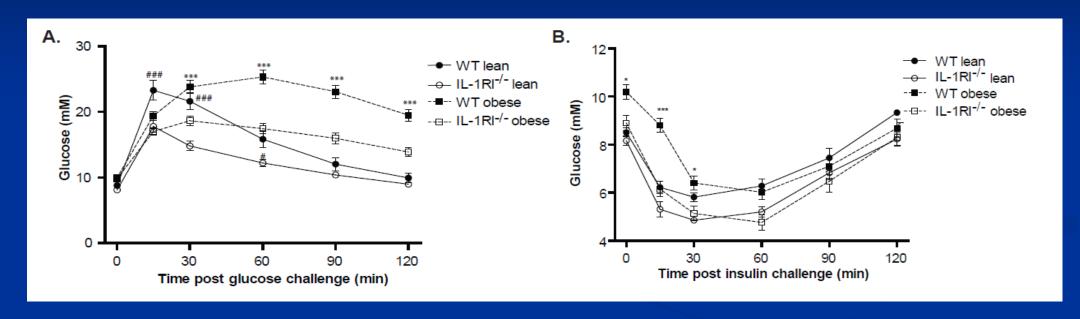

Lack of Interleukin-1 Receptor I (IL-1RI) Protects Mice From High-Fat Diet-Induced Adipose Tissue Inflammation Coincident With Improved Glucose Homeostasis

Fiona C. McGillicuddy, Karen A. Harford, Clare M. Reynolds, Elizabeth Oliver, Mandy Claessens, Kingston H.G. Mills, and Helen M. Roche

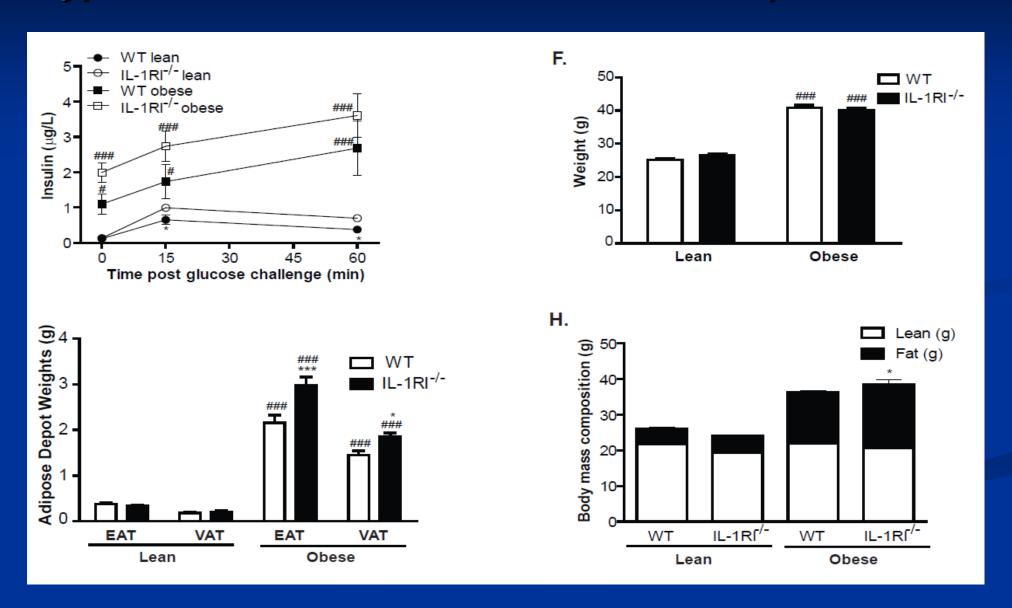
IL-1RI-/- Time Course In Vivo Study Design

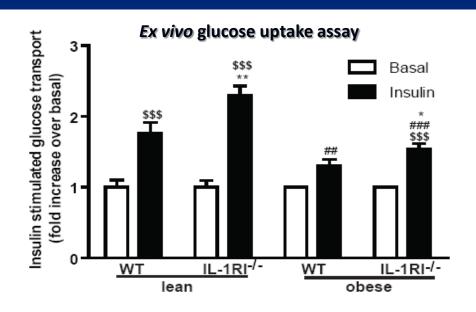
Commencement of HFD or LFD diet in WT and IL-1RI- animals

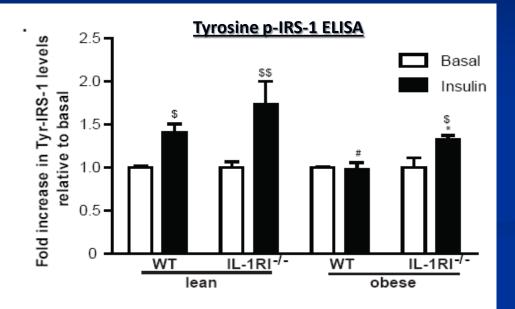
GTT: Tail-tips amputated and baseline glucose levels measured using a glucometer Mice injected with 1.5g/kg (25% w/v) glucose and clearance from plasma monitored over 120min ITT: Mice injected with 0.75U/kg insulin and glucose levels were monitored over 120min

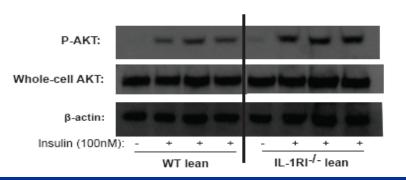


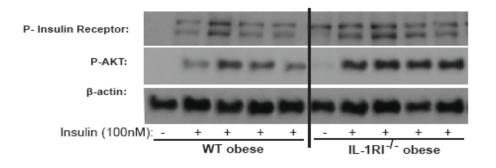
High-fat diet Low-fat diet


	ingiliat alet		2011 141 4101			
Product #	D07081501		D0708	D07081502		
	gm (%)	kcal (%)	gm (%)	kcal (%)		
Protein	24	20	19	20		
Carbohydrate	41	35	67	70		
Fat	24	45	4	10		
Total		100		100		
kcal/gm	4.73		3.85			
Ingredient	gm	kcal	gm	kcal		
Casein, 80 Mesh	200	800	200	800		
L-Cystine	3	12	3	12		
Corn Starch	72.8	291	315.0	1260		
Maltodextrin 10	100.0	400	35.0	140		
Sucrose	172.8	691	350.0	1400		
Cellulose, BW200	50	0	50	0		
Soybean Oil	25.0	225	25	225		
Lard	0.0	0	0	0		
Palm Oil	177.5	1598	20	180		
Mineral Mix S10026	10	0	10	0		
DiCalcium Phosphate	13	0	13	0		
Calcium Carbonate	5.5	0	5.5	0		
Potassium Citrate, 1 H	16.5	0	16.5	0		
Vitamin Mix V10001	10	40	10	40		
Choline Bitartrate	2	0	2	0		
FD&C Yellow Dye #5	0.025	0	0.025	0		
FD&C Red Dye #40	0	0	0.025	0		
FD&C Blue Dye #1	0.025	0	0	0		
Total	858.15	4057	1055.05	4057		


IL-1RI-/- mice are protected against high-fat diet induced insulin resistance

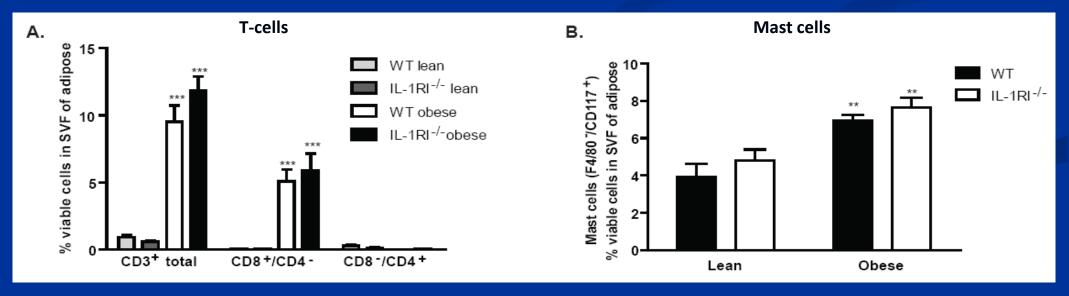



Despite improved glucose homeostasis IL-1RI^{-/-} mice are hyperinsulinemic and have increased adipose mass

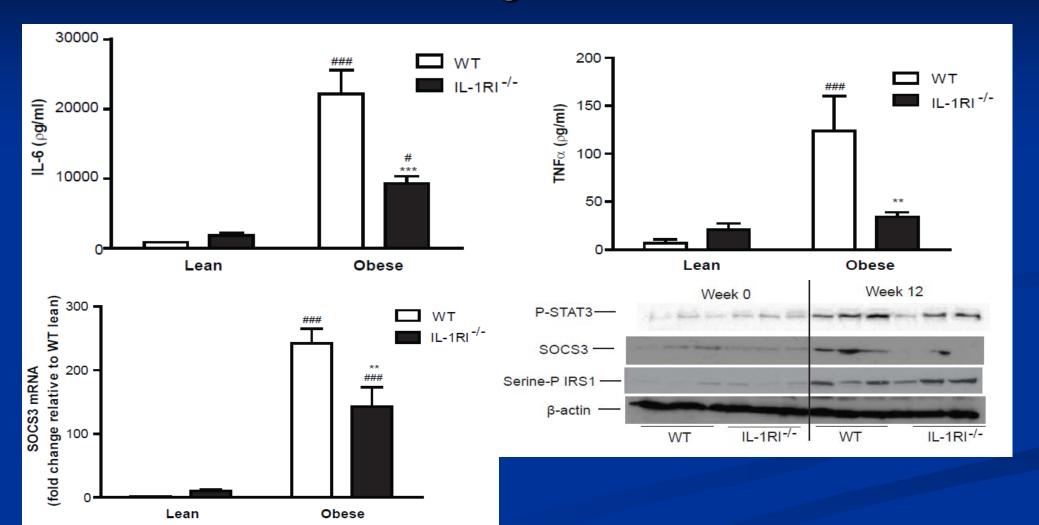


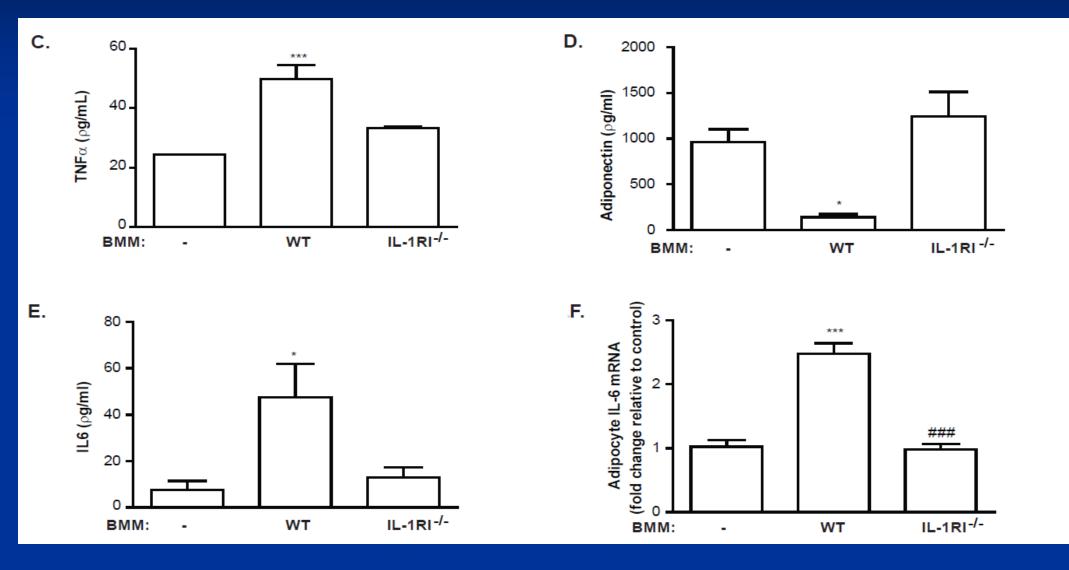
IL-1RI^{-/-} adipose is more insulin sensitive than WT both at baseline and after HFD

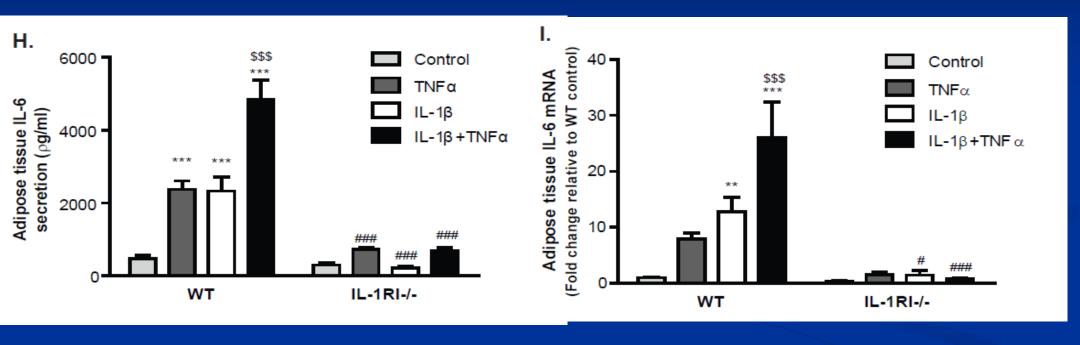




Equivalent immune cell recruitment into adipose




IL-1RI^{-/-} adipose tissue macrophages are less immunogenic than WT


Attenuated inflammation in IL-1RI-/- adipose explants after high-fat diet

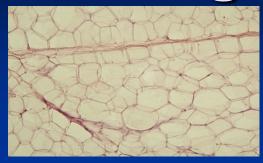
Altered cytokine cross-talk between IL-1RI-/macrophages and adipocytes

IL-1β and TNFα synergy in adipose tissue is lost in absence of IL-1RI

Exploratory analysis of the Adipose Tissue Secretome

Eugene Dillon
Dr Fiona McGilicuddy
Prof Giuliano Elia
Prof Helen Roche

Experimental Design & Workflow

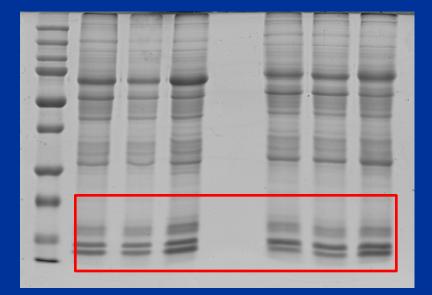


WT & IL1RKO

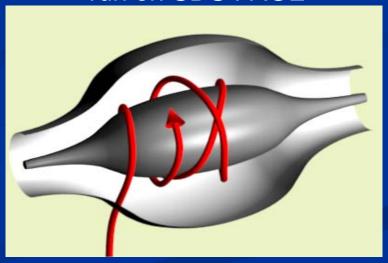
WT1 WT2 WT3

12wk HF Diet

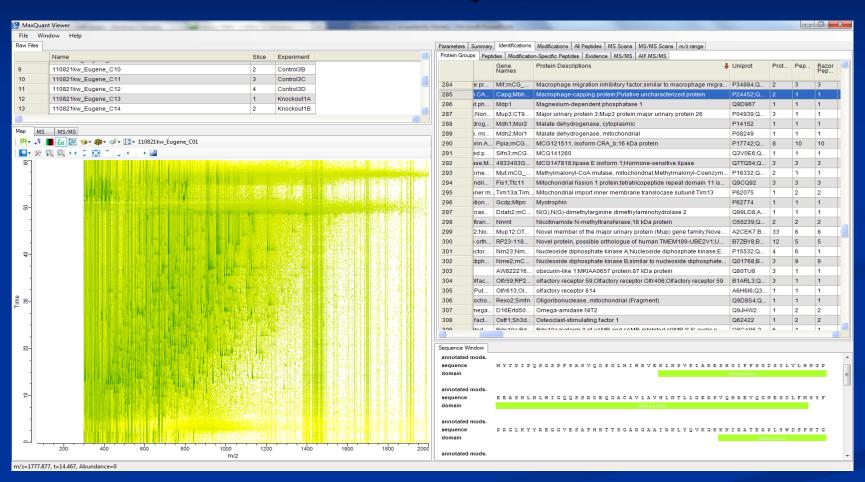
KO1 KO2 KO3



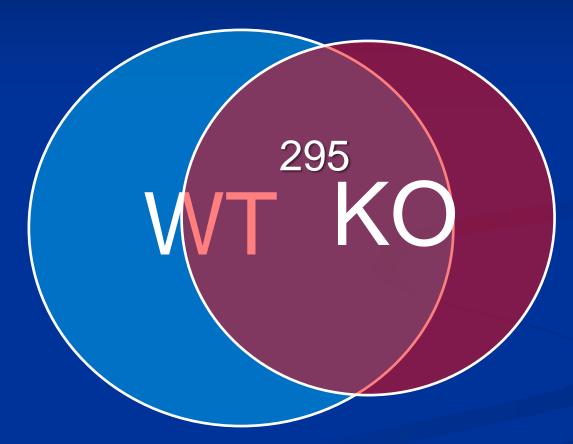
Adipose Tissue Explant,


Cultured 6hr

Protein isolated & run on SDS PAGE



Slices representing 5kDa-25kDa Tryptic digestion


LC-MS/MS Orbitrap

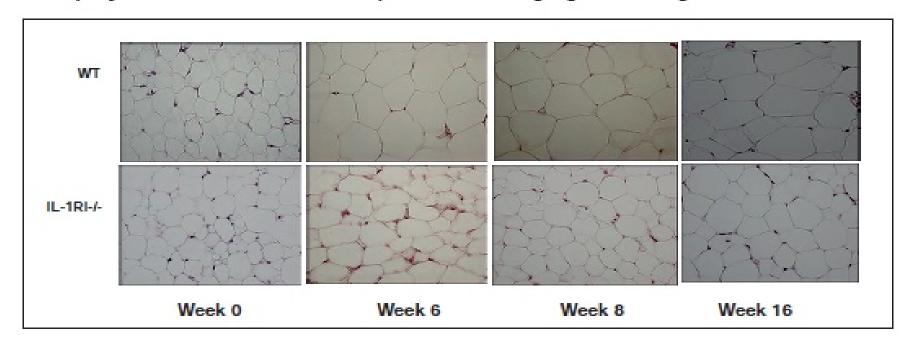
Adipose Tissue Secretome with MaxQuant

MaxQuant FDR 0.05% identified 405 proteins

Huge overlap in proteins expressed

295 proteins overlapped with WT and KO only expressing 70 and 41 different proteins

Adipose secretome - proteins reduced in IL-1RI-/- compared to WT


Majority Protein IDs	Protein Names	Uniprot	RAZ PEP FOLD CHANGE SIGNAL PEP
IPI00132575	Coactosin-like protein	Q9CQI6	7.0
IPI00111013	Cathepsin D	P18242	6.0 Y
IPI00320239	C-type lectin domain family 3 member B	P43025	5.5 Y
IPI00944681	Major urinary protein 12	A2CEK7	5.0 Y
IPI00378649	Major urinary protein 24	Q5FW60	5.0 Y
IPI00853914	Heterogeneous nuclear ribonucleoproteins A2/B1	O88569-1	5.0
IPI00123924	Alpha-1 protease inhibitor 4	Q00897	5.0 Y
IPI00139788	Beta-1 metal-binding globulin	Q921I1	4.0 Y
IPI00173343	Oligoribonuclease, mitochondrial	Q9D8S4	4.0
IPI00649972	Vacuolar protein sorting 25 (Yeast)	A2A4J8	4.0
IPI00133948	13 kDa FK506-binding protein	P45878	4.0 Y
IPI00756745	Lama2 protein	Q7TQI9	4.0
IPI00229680	Calcineurin homologous protein	P61022	4.0
IPI00130640	Heat-responsive protein 12	P52760	4.0
IPI00319830	Beta-II spectrin	Q62261-1	3.7
IPI00114368	ER-Golgi SNARE of 24 kDa	O08547	3.5
IPI00134621	GTPase Ran	P62827	3.3
IPI00331442	Peptide methionine sulfoxide reductase	Q9D6Y7	3.3
IPI00230185	Glycerol-3-phosphate dehydrogenase [NAD+], cytoplasmic	P13707	3.0
IPI00655110	Epididymal retinoic acid-binding protein	A2AJB7-1	3.0
IPI00125931	Cystatin-B	Q62426	3.0

Adipose secretome - proteins reduced in IL-1RI-/- compared to WT

- Cathepsin D, S & C expression reduced in IL-1RI -/-
- Cathepsins are cysteine proteases, regulated by Nf-kB and initiate inflammatory cascades
- Cath-B activates caspase 11, cleaves caspase 1 mediating release of mature IL-1β.
- Elevated in obesity and IR & may play a role in adipogenesis
- Cath-D expression is up-regulated in obesity & during adipocyte differentiation
- Cath-D silencing impedes adipogenesis and inhibits PPARγ, HSL and aP2 expression.
- Cathepsins also function to modify the extracellular matrix
- Adipose morphology marked difference

Adipocyte hypertrophy evident in WT mice with HFD but not evident in IL-1RI-1- mice

A. Adipocyte size in WT and IL-1RI-/- adipose tissue during high fat feeding

Adipose secretome - proteins increased in IL-1RI^{-/-} compared to WT

Majority Protein IDs	Protein Names	Uniprot	RAZ PEP FOLD CHANGE
IPI00229475	Desmoplakin III	Q02257	10
IPI00930843	Bromodomain adjacent to zinc finger domain protein 1Bsyndrome chromosomal region 9 protein homolog	Q9Z277-2	6
IPI00124223	11S regulator complex subunit alpha	P97371	5
IPI00120465	Resistin	Q99P87	5
IPI00118286	14-3-3 protein sigma	O70456	4.75
IPI00118384	14-3-3 protein epsilon	P62259	4.666666667
IPI00459279	Dihydropteridine reductase	Q8BVI4	4
IPI00928375	Hormone-sensitive lipase	Q7TQ54	4
IPI00117829	Caveolin-1	P49817-1	3.666666667
IPI00555071	Ras suppressor protein 1	Q01730	3.571428571
IPI00230707	14-3-3 protein gamma	P61982	3.533333333
IPI00223783	Lipid droplet-associated protein	Q8CGN5-1	3.2
IPI00116498	14-3-3 protein zeta/delta	P63101	3.0625
IPI00853924	14-3-3 protein tau	P68254-1	3
IPI00759878	Complement C3	P01027-2	3
IPI00230320	Carbonate dehydratase I;Carbonic anhydrase 1	P13634	3
IPI00225390	Cytochrome c oxidase subunit 6B1	P56391	3
IPI00114329	Gamma-ECS regulatory subunit	O09172	3
IPI00115866	Glyoxalase II	Q99KB8-1	3
IPI00123449	Spot 14 protein	Q62264	3

Adipose secretome - proteins increased in IL-1RI-/- compared to WT

- 14-3-3 protein isoforms
 - Apoptosis, ER Stress, MMP-1, cellular re-modelling
 - 14-3-3 signal transduction-regulatory protein
 - Many AKT substrates undergo 14-3-3 binding upon phosphorylation, this may modulate AKT action
 - Regulate plasma membrane GLUT4 content and insulin-stimulated glucose uptake.

Functional effect of adipose secretome

- Clear synergy between IL-1β & TNFα with functional effects on adipocyte IR
- Coupled with important ECM re-modelling
- In terms of the regulatory mechanisms that determine adipose morphology
 - ECM re-modelling important
 - a function or consequence of lack of IL-1RI
 - Lack of IL-1RI affects adipogenic potential

Acknowledgements

Nutrigenomics Research Group

- » Fiona McGillicuddy
- » Eugene Dillon
- Clare Reynolds
- » Karen Hartford
- » Orla Finucane
- Colm O'Grada
- » Melissa Morine
- » Catherine Phillips
- » Jane Ferguson
- » Audrey Tierney
- » Jolene Mc Monagle
- Vanessa Rungapamestry
- » Annalouise O'Connor
- » Elizabeth Oliver

Trinity College Dublin

- James Gibney
- » Kingston Mills

Rowett Research Institute

- » Baukje De Roos
- University College Dublin
 - » Alfonso Blanco
 - Gerard Cagney & Giuliano Elia
 - » Lorraine Brennan & Mike Gibney

Science Foundation Ireland

» Principal Investigator Programme

Dept of Agriculture & Food

» Food Institutional Research Measure

EU Framework 6

» Food Quality & Safety Programme

Health Research Board

» PhD Mol Med Programme