HOW TO STAY HEALTHY? EAT LESS?

LUIGI FONTANA, MD, PhD

Istituto Superiore di Sanità, Division of Nutrition and Aging Washington University in St.Louis, Division of Geriatrics

Definition of "OPTIMAL HEALTH"

- Optimal health" is the state in which there is the highest possible attainment of physical, mental and social well-being and the lowest risk of developing future diseases.
- From a biological point of view, optimal health can be defined as the ability of an organism to maintain or regain homeostasis in an ever changing environment, and especially in response to a wide range of stressors.

Calorie restriction without malnutrition increases maximal lifespan up to 50% in rodents

Weindruch R. N Engl J Med 1999

Calorie restriction and metabolic health

Calorie restricted animals are:

- Metabolically and physiologically younger
- More metabolically flexible
- More Resistant to many types of stresses (e.g. surgery, radiation, acute inflammation, exposure to heat, and oxidative stress)

as compared to ad-libitum fed animals

Masoro EJ. Mech Ageing Dev. 2005

Weindruch R. N Engl J Med 1999

Calorie restriction protects against spontaneous, radiation- and chemical- induced tumors

Number of	Caloric r	estriction (%)	Tumor reduction (%)
experiments	Range	Mean (SE)	Mean (SE)
9	0	0 (1.5)	-9.5 (10.2)
18	7-20	15.3 (1.2)	20.2 (8.1)
22	21-30	25.9 (1.1)	49.6 (6.4)
17	31-40	37.0 (1.2)	52.5 (7.8)
16	41-58	52.9 (1.1)	62.2 (7.6)
Site- and fat-adjus	ted means ±	SE, weighted by	number of animals pe

Site- and fat-adjusted means \pm SE, weighted by number of animals per experimental group.

Data from 82 published experiments involving several tumor sites in mice

Albanes D. Cancer Research 1987

~30% of the CR rodents dies without any gross pathological lesion

~20% of centenarians are escapers

In a longitudinal study of the 424 centenarians:

- 19% were ESCAPERS (= without common ageassociated disease before 100 years of age)
- 43% were delayers (= age-associated disease after the age of 80 years)
- 38% were survivors (= age-associated disease before the age of 80 years)

Evert et al., J. Gerontol. A Biol. Sci. Med. Sci 2003

Mammalian animal models of longevity

- Calorie restriction and intermittent fasting
- Methionine restriction
- Ames and Snell dwarf mice
- Growth hormone receptor KO mice
- IGF-1 receptor deficient mice
- Klotho overexpressing mice
- Fat Insulin Receptor KO (FIRKO) mice
- Insulin Receptor Substrate 1 KO mice
- Brain IRS-2 KO mice
- PAPP-A KO mice
- Ribosomal S6 protein kinase-1 KO mice
- Rapamycin supplementation
- p66shc KO mice
- > Type 5 Adenylyl Cyclase KO mice
- Angiotensin II type 1 receptor KO mice
- > Mice overexpressing catalase targeted to mitochondria

Down regulation Insulin/IGF-1/mTOR pathways

Nutrient –sensing signaling pathways

Conserved Nutrient Signaling Pathways Regulating Longevity

Fontana L et al. Science 2010

GH receptor KO mice live 40-50% longer than WT mice

Bonkowski MS et al., PNAS 2006 COSCHIGANO KT et al., Endocr 2000

GHR deficient humans are protected against cancer and diabetes, but are not living longer

Guevara-Aguirre et al. Sci Transl Med 2011

Calorie restriction reduces cardiovascular and cancer mortality by 50% in non-human primates

Age (years)

Colman et al. Science 2009

Calorie restriction reduces the age-associated brain atrophy in non-human primates

Colman et al. Science 2009

Attenuation of sarcopenia by CR in non-human primates

Colman et al. J Gerontol 2008

Effects of long-term CR in humans

	CR group (n=28)	EX group $(n=28)$	WD group $(n=28)$	Among group P
Age (years) Sex (M/F)	53.0±11 24/4	54.0±11 24/4	53.0±10 24/4	ns
Height (m)	1.73 ± 0.1	1.75 ± 0.1	1.76 ± 0.1	ns
Weight (kg)	58.1±6.0*,**	68.0±7.6*	81.1±14.5	0.0001
BMI (kg/m ²)	19.5±1.7*,**	22.2±2.1*	26.0±3.0	0.0001
Total body fat (%)				
Men	9.7±4.6*	10.9±4.5*	23.2±6.2	0.0001
Women	20.5±9.9	20.1 ± 1.7	32.0±7.8	0.085
Trunk fat (%)				
Men	7.0±5.0*	8.4±6.0*	25.2±8.4	0.0001
Women	14.1 ± 8.8	13.2±2.6	27.5 ± 10.4	0.056
Lean mass (kg)				
Men	51.7±4.8*,**	59.2±5.0	59.9 ± 8.8	0.0001
Women	38.9±5.3	40.3±3.0	35.6±2.0	ns

Values are means \pm SD

* $P \le 0.0001$, significantly different from Western diet group; ** $P \le 0.001$, significantly different from EX group

BMI changes during CR Historical data (n=32)

CR practitioner before starting CR and after 7 years of CR

Body weight180T-chol and LDL-cFasting glucose

Blood pressure

180 lb or 81.6 kg (BMI 26.0 kg/m²) 244 mg/dl and 176 mg/dl 87 mg/dl 144/87 mmHg

134 lb, or 60.8 kg (BMI 19.4 kg/m²) 165 mg/dl and 97 mg/dl 74 mg/dl 94/61 mmHg

Fontana L et al. Science 2010

Circulating adipokines and cytokines

	CR group $(n=28)$	EX group $(n=28)$	WD group $(n=28)$	Among group P
Adiponectin (µg/mL)	15.7±8.2*,**	11.1±5.5	9.5±4.3	0.001
Resistin (pg/mL)	7.0±2.2***	8.1 ± 1.7	8.7±2.3	0.015
IL-6 (pg/ml)	$0.73 \pm 0.3*$	$0.71 \pm 0.3*$	1.21 ± 0.8	0.001
s-TNF R-I (ng/mL)	1.05±0.33***	$0.95 \pm 0.28*$	1.30 ± 0.27	0.0001
s-TNF R-II (ng/mL)	2.77±0.83***	2.81±0.69***	3.40 ± 0.84	0.008
Fructosamine (µmol/L)	269±40**	241 ± 17	262±34	0.005
sRAGE (µg/mL)	1.27±0.66	1.63±0.53***	1.11±0.69	0.01
Free fatty acids (mEq/L)	0.72±0.35***	$0.59 {\pm} 0.18$	0.51 ± 0.20	0.015

All values are means \pm SD

* $P \le 0.003$, significantly different from Western diet group; ** $P \le 0.05$, significantly different from EX group; *** $P \le 0.05$, significantly different from Western diet group

Glucose tolerance and insulin action

	CR	EX	WD
HOMA-IR index	0.3±0.1*	0.4±0.3 [*]	1.6±1.3
ISI Matsuda index	18.5±6.7*	20.4±9.2*	7.0±3.6
Fasting glucose (mg/dl)	83±8 ^{*,†}	91±8	95±8
Fasting Insulin (µU/ml)	1.4±0.7*	2.0±1.3*	6.9±5.6
2-hr glucose (mg/dl)	132 ± 42 [†]	103±28	116±28
2-hr insulin (µU/ml)	37.7±24 [†]	16.8±11*	60.4±55
Glucose AUC (mg•min/dl)	16.1±3.2	14.9±2.6*	16.8±3.0
Insulin AUC (µU•min/dl)	3.5±1.7*	2.7±1.8 [*]	6.2±3.6

Fontana et al. Age 2009

Cardiometabolic risk factors

	CR	EX	WD	P value
Total cholesterol (mg/dl)	162±36*	166±35*	202±36	0.0001
LDL cholesterol (mg/dl)	88±24*	92±26*	122±33	0.0001
HDL cholesterol (mg/dl)	63±19*	61±17*	50±11	0.004
T Chol/HDL Chol ratio	2.7±0.5*	2.8±0.6*	4.3±1.1	0.0001
Triglycerides (mg/dl)	58±18*	65±22*	159±94	0.0001
SBP (mm Hg)	103±9*,†	125±17	131±13	0.0001
DBP (mm Hg)	62±7* ^{,†}	72±8*	84±8	0.0001
Fasting glucose (mg/dl)	82±7* ^{,†}	90±7	95±9	0.0001
hsCRP (mg/L)	0.2±0.3* ^{,†}	0.8±1.1	1.1±1.1	0.004

CR ameliorates the decline in diastolic function

		Western Diet	CR		
	Parameter	Mean±SD	Mean±SD	p value	
Diastolic Function	1				
	E _{peak} (cm/sec)	64.3 ± 12.6	70.8 ± 13.4	ns	
	$A_{\text{peak}}^{\text{peak}}$ (cm/sec)	53.0 ± 10.2	45.7 ± 9.0	0.011	
	E/A	1.24 ± 0.28	1.61 ± 0.44	0.001	
	Atrial filling fraction	0.35 ± 0.05	0.29 ± 0.06	0.0001	
Tissue Doppler In	naging				
	E' _{Lateral} (cm/sec)	10.2 ± 2.8	14.3 ± 3.0	0.001	
Model Derived Parameters					
	c (g/sec)	19.6 ± 3.6	14.9 ± 5.0	0.001	
	$k (g/sec^2)$	218.9 ± 44.6	180.1 ± 41.6	0.003	

Meyer T et al. JACC 2006

Long-term CR reduces metabolic factors associated with cancer in humans

- Reduces adiposity
- Reduces insulin
- Reduces growth factors such as IGF-1 (if associated with lower protein intake)
- Reduces sex hormones
- Reduces inflammation
- Reduces oxidative stress

NEUROENDOCRINE ADAPTATIONS OF LONG-TERM CR

Long-term CR depresses serum T3 concentration in the rat

Herlihy et al. Mech Ageing Dev 1990

Body temperature and longevity

in hypocretin neurons

20

Age (months)

Females

1.0 0.8

Survivorship 9.0 9.0 9.0

0.2

0-

ò

10

Baltimore Longitudinal Study of Aging: Male Humans

Duffy et al., Mech Ageing Dev 1990 & Conti et al., Science 2006

30

0.8

0.2

0-

0

Survivorship 9.0 9.0 9.0 M wt

10

Transgenic mice overexpress UCP2

Males

20

Age (months)

30

40

Roth G et al. Science 2000

Long-term CR reduces 24-hrs core body temperature in humans

Soare A et al. Aging 2011

Long-term CR increases plasma corticosterone concentration in mice

Long-term CR increases plasma cortisol concentration in humans

Unpublished data

Long-term CR reduces serum testosterone concentration in rats

Chen et al. Exp Gerontol 2005

Free and rogen index (male only)

DHEA-s

Cangemi R et al. Aging Cell 2010

Long-term CR reduces plasma IGF-1 concentration by 20-40% in rats

Breese CR et al. J Gerontol Biol sci 1991

1-yr CR intervention does <u>NOT</u> reduce serum IGF-1 concentration

Long-term CR does <u>NOT</u> reduce serum IGF-1 concentration

Moderate protein restriction reduces serum IGF-1 concentration

Diet composition: protein restricted vegan diet versus CR diet

	PR vegan (n=28)	CR diet (n=28)	WD (n=28)
Age (yrs)	53.4±11	52.2±12	53.7±8.2
Body fat (%)			
men	15.2±5.4*,†	7.1±4.6*	23.6±6.5
women	25.8±7.7*	20.5±9.9*	36.9±3.9
Calorie intake (kcal/d)	1980±535*	1772±351*	2505±522
Protein intake			
(%)	9.6±3.3* ^{,†}	23.5±5.7*	15.9 ± 3.0
(g/Kg/day)	$0.76 {\pm} 0.2^{*,\dagger}$	1.73±0.4*	1.24±0.3
Fat intake (%)	41.3±10*,†	28.1±9*	33.6±6

Serum IGF-1 is associated with increased risk of breast and prostate cancer

Plasma IGF	RR	RAR			
Breast cancer (premenopausal, <50 years)					
<158 ng/mL	1.0	1.0			
158–206 ng/mL	2.64	3.12			
>207 ng/mL	4.58	7.28			
Prostate cancer					
99–184 ng/mL	1.0	1.0			
185–236 ng/mL	1.32	1.94			
237–293 ng/mL	1.81	2.83			
294–500 ng/mL	2.41	4.32			

RR, relative risk; RAR, risk adjusted for IGFBP3.

Plasma IGF-1 levels are negatively correlated with median lifespan in mice

31 genetically-diverse inbred mouse strains (median lifespan: 251-964 days)

For the longer-lived strains (>600 days), the negative correlation between lifespan and IGF-1 is stronger: 6 mos R=-0.53, P<0.01; 12 mos R=-0.39, P<0.01; 18 mos R=-0.3, P<0.05.

Yuan et al., Aging Cell 2009

Protein requirements for healthy adults

Traditional dietary intake of Okinawans and Japanese in 1950

			Okinawa, 1	1949 ^a	Japan, 1950 ^b
Total calories			17854	2	2068
Total weight ((grams)		1262		1057
Caloric densit	ty (calories/gra	um)	1.4		2.0
Total protein	in grams (% to	tal calories)	39 (9))	68 (13)
Total carbohy	drate in grams	(% total calori	es) 382 (8	5)	409 (79)
Total fat in gr	ams (% total c	alories)	12 (6))	18 (8)
$\begin{array}{c} 193 \\ 177 \\ 90 \\ 90 \\ - \\ 80 \\ - \\ 70 \\ - \\ 60 \\ - \\ 50 \\ - \\ 51 \\ 40 \\ 33 \\ 30 \\ - \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	■ C □ J ⊠ U	okinawa apan J.S.	<u>Life expectar</u> Okinawa: USA: <u>Life expectar</u> Okinawa: Japan: USA:	<u>ncy at birth</u> : 86 y F 80 y F <u>ncy at age 6</u> 24.1 y 22.5 y 19.3 y	; 77.6 y M ; 75 y M <u>5</u> : F; 18.5 y M F; 17.6 y M F; 16.2 y M
20 - 15 10 - 15 0 Male Female Coronary Heart Disease (ICD 410-414)	19 10 10 6 Male Female Colon Cancer (ICD 153)	Prostate Cancer (ICD 185)	14 12 5 8 6 2 Male Female Lymphoma (ICD 200, 201, 202) Wil	llcox BJ et al. Al	nn NY Acad Sci 200

Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans

In 18 CR individuals:

- Protein intake associated with KO data (R=0.307; adjusted p=0.030)
- Insoluble fiber associated with bacterial OTU (R=0.371; adjusted p=0.013)

OTU = operational taxonomic units KO = KEGG orthology groups

Muegge et al. Science 2011

Conclusions and future directions

Life expectancy almost doubled between 1840 and 2007

Christensen et al. Lancet 2009

Prevalence of chronic disease

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Epidemic of overweight/obesity

≥30%

25%-**29%**

Relationship Between BMI and Cardiovascular Disease Mortality

Calle et al. N Engl J Med 1999

Relationship Between BMI and Cancer Mortality in Women who never smoked

Hu FB et al., NEJM 2004

Our goal is to study and implement strategies for the promotion of SUCCESSFUL AGING

SUCCESSFUL AGING defined as the ability of human beings to AVOID DISEASE AND DISABILITY and remain:

- physically and cognitively healthy
- happy and creative
- enpowered
- contributing to social and productive activities
- active & independent

SNPERIORE DI SANIH

..... for as long as possible.

Healthspan equals to lifespan

OPTIMAL CALORIE INTAKE FOR SUCCESSFUL/HEALTHY AGING

CALORIE INTAKE (Kcal/day)

Fontana L. et al. JAMA 2007

Markers of biological aging ?

- In 2011 we have good risk factors for CVDs, stroke, type 2 diabetes
- In 2011 risk factors for cancer, Alzheimer's and autoimmune diseases are still missing

> In 2011 markers of aging are still missing

SUPERIORE DI SANIT

Acknowledgments

Division of Geriatrics and Nutritional Science, WUSTL, USA

- Timothy Meyer & Ted Weiss
- Dennis Villareal & Roberto Cangemi
- Kathie Obert & Morgan Schram
- Daniela Omodei & Andreea Soare
- John Holloszy

Cardiovascular Biophysics Laboratory, WUSTL, USA

Sandor Kovacs

Department of Genetics, WUSTL, USA

Seth Crosby

Clinical Research Unit , WUSTL, USA

Division of Nutrition and Aging

Italian NIH, Rome, Italy

- Paola Meli
- Elena Mancini
- Francesca Maialetti
- Claudio Di Sanza
- Manuela Abbate