

Early molecular events of adipose tissue development during overfeeding and weight gain in humans

Hubert VIDAL

Cardio-Metabolism, Diabetes and Nutrition - CarMeN Laboratory INSERM Unit 1060/INRA 1235

and

Rhône-Alpes Human Nutrition Research Centre (CRNH-RA)

Lyon- France

hubert.vidal@univ-lyon1.fr

OBESITY : a worldwide epidemic

OBESITY : a worldwide epidemic

Obesity-related complications:

Type 2 diabetes Cardio-vascular diseases Cancers Sleep apnea Reduction of life expectancy

. . .

How to study the development of adipose tissue during normal life in humans, using an experimentally feasible protocol and under ethical conditions?

How to study the development of adipose tissue during normal life in humans, using an experimentally feasible protocol and under ethical conditions?

Overfeeding protocol with a lipid-enriched dietary supplement, providing about 760 Kcal/day in excess during 8 weeks (56 days) in healthy volunteers

combined with successive subcutaneous abdominal adipose tissue biopsies at D0, D14 and D56 for transcriptomics

Lipid overfeeding protocol

 Objective : to characterize the mechanisms of subcutaneous development during the early phase of weight gain induced by an overfeeding period with a lipid enriched-diet providing about 30% (760 kcal/d) of daily energy excess

- Duration : 8 weeks (56 days)
- Subjects : 44 volunteers (healthy men, 33 ± 1 years, BMI = 25 ± 1)

Asked to maintain their normal lifestyle and feeding behaviour and to add each day:

100 g (380 kcal) of cheese

40 g (230 kcal) of almonds

Lipid overfeeding protocol

• <u>Objective</u> : to characterize the mechanisms of subcutaneous development during the early phase of weight gain induced by an overfeeding period with a lipid enriched-diet providing about 30% (760 kcal/d) of daily energy excess

- <u>Duration</u> : 8 weeks (56 days)
- <u>Subjects</u>: 44 volunteers (healthy men, 33 ± 1 years, BMI = 25 ± 1)

<u>Asked to maintain their normal lifestyle and feeding behaviour and to add each day:</u>

Anthropometric and metabolic parameters

	D0	D14	D56
n	44	44	44
Age (years)	33 ± 1	-	-

Anthropometric parameters			
Body weight (kg)	79.1 ± 1.8	79 .9 ± 1.8***	81 .6 ± 1.8 ***
Weight gain (kg)	-	0.76 ± 0.14	2.51 ± 0.21
Waist circumference (cm)	89.3 ± 1.5	-	92 .4 ± 1.5 ***
Fat mass (%)	19.6 ± 0.8	-	20 .3 ± 0.8 ***

Metabolic parameters			
Fasting glucose (mM)	5.11 ± 0.06	5.10 ± 0.09	5.21 ± 0.08
Fasting insulin (mU/L)	10.1 ± 0.6	11 .6 ± 0.7***	10 .5 ± 0.6
НОМА	2.29 ± 0.16	2.63 ± 0.17 **	2.44 ± 0.15 *

*: p<0.05 **: p<0.01

***: p<0.001

Transcriptomic analysis in subcutaneous adipose tissue

AFFYMETRIX

HG U133 Plus 2.0 arrays (47,401 transcripts)

N = 13 subjects

Statistical analysis using Limma test

Probes with p-value < 0.05 and fold change > |1.25| at D14 and D56 were considered as differentially expressed during overfeeding

Biological functions and pathways identified using DAVID (Database for Annotations, Visualization and Integrated Discovery)

> 180 regulated genes between D0 and D14 (p-value<0.05/ FC>1.25)

> 180 regulated genes between D0 and D14 (p-value<0.05/ FC>1.25)

Pathway enrichment (DAVID)

> 486 regulated genes between D0 and D56 (p-value<0.05/ FC>1.25).

		Fold change Microarray		Fold change RT-qPCR	
Gene Symbol Entrez Gene	D14	D56	D14	D56	
Lipid metab	olism				
AACS	65985	1.4 ± 0.1	1.6 ± 0.3	1.7 ± 0.2	2.5 ± 0.4
ACLY	47	1.8 ± 0.3	2.2 ± 0.7	1.8 ± 0.3	2.6 ± 0.4
CETP	1071	1.3 ± 0.2	3.2 ± 0.7	1.7 ± 0.3*	2.7 ± 0.6
DGAT2	84649	2.0 ± 0.4	1.7 ± 0.2	2.8 ± 0.6	1.9 ± 0.2
LPIN1	23175	1.4 ± 0.2	1.1 ± 0.1	1.5 ± 0.4	1.4 ± 0.1
SCD	6319	1.2 ± 0.1	2.4 ± 0.7	$2.0 \pm 0.4 \star$	2.5 ± 0.3
SLC2A5	6518	2.2 ± 0.5	4.0 ± 1.9	1.2 ± 0.4 ×	2.4 ± 0.3
SREBF1	6720	1.5 ± 0.2	1.4 ± 0.1	2.0 ± 0.4	1.7 ± 0.2
VLDLR	7436	1.4 ± 0.2	1.2 ± 0.1	1.6 ± 0.3	1.5 ± 0.2
CIDEA	1149	0.9 ± 0.3	0.8 ± 0.1	0.8 ± 0.1	0.8 ± 0.1
Extracellula	r matrix				
COL6A3	1293	1.0 ± 0.1	1.3 ± 0.1	1.0 ± 0.1	1.3 ± 0.1
Angiogenes	is				
APLNR	187	1.0 ± 0.1	1.3 ± 0.1	0.9 ± 0.1	1.4 ± 0.1
ANGPTL4	51129	0.9 ± 0.1	0.8 ± 0.1	0.9 ± 0.2	0.9 ± 0.1 💈
EDN1	1906	0.8 ± 0.1	1.0 ± 0.1	0.7 ± 0.1	1.4 ± 0.2
Renin-angio	tensin syster	n			
ACE	1636	1.2 ± 0.1	1.5 ± 0.6	1.2 ± 0.1	1.4 ± 0.1
AGT	183	1.5 ± 0.2	1.4 ± 0.1	2.5 ± 0.5	2.2 ± 0.3
ENPEP	2028	1.1 ± 0.1	1.5 ± 0.1	1.2 ± 0.2	1.7 ± 0.2
MME	4311	14 + 01	14 + 01	14 + 02	15 + 02

Validation of microarray data using real-time PCR (24 subjects)

Data are presented as mean ± SE.

Underlined values indicate significant changes at D14 or D56 with respect to D0 (p < 0.05 with paired t-test for qPCR, p< 0.05 with Limma for microarray). * Indicates different result between microarray and RT-PCR

Validation of DGAT2 gene expression change by RT-qPCR and Western-blot

Increased angiogenesis and vascularization in human subcutaneous adipose tissue during overfeeding

Microvascular density : 21.2 ± 9.7 / mm2

32.1 ± 14.9 / mm2 (p<0.01, n = 12)

Remodeling of subcutaneous adipose tissue during overfeeding: Increased extracellular matrix and conjonctive tissue deposits

The Wnt signalling networks is a putative paracrine regulator of adipogenesis

J.K. Sethi and A. Vidal-Puig, Biochemical Journal 2010 427, 1-17

The canonical Wnt/ß-catenin signaling pathways must be inhibited to allow adipogenesis

Adapted from Takeda, I. et al. (2009) Nat. Rev. Rheumatol.

The expression of several inhibitors of the canonical pathway is up-regulated during overfeeding

Inhibition of the canonical Wnt/ ß-catenin pathways in human subcutaneous adipose tissue during overfeeding

Western-blot analysis, n= 8 * p < 0.05

Inflammation ?

No evidence for immune cells (macrophages) recruitment during lipid overfeeding

INSERM U-1060/INRA U-1235

Centre de Recherche en Nutrition Humaine (Martine LAVILLE)

Emmanuelle MEUGNIER Cyrille DEBARD Emmanuelle LOIZON Myriam OLIEL Cécile BOSSU Monique SOTHIER Jocelyne PEYRAT

Jean-Yves SCOAZEC

Béatrice MORIO Emilie CHANSEAUME

John BROZEK

