Branched chained amino acids, diabetes and exercise

Sindre Lee, MD, PhD student UiO, Norway

Sindre.lee@medisin.uio.no

Obesity pandemic

Increased fats in the diet?

Fat = insulin resistance?

Substrate overflow hypothesis (Randle cycle)

Randle, 1998; McGarry, 2002

Interaction between glucose and fat metabolism

Fasting:

Glucose < fatty acids

Fed:

Glucose > fatty acids

Randle, 1998; McGarry, 2002

However, this model does not completely explain insulin resistance.

Recent studies suggest role for branched-chain amino acids!

Newgard, 2012 Kelley and Mandarino, 2000 However, this model does not completely explain insulin resistance.

Recent studies suggest role for branched-chain amino acids!

New hypothesize: BCAA overflow and interference with fat/glucose oxidation

> Newgard, 2012 Kelley and Mandarino, 2000

1969: Branched chain and aromatic amino acids are elevated in obese humans.

1969: Branched chain and aromatic amino acids are elevated in obese humans.

(Other focus; muscle growth/maintenance/performance)

Felig, Marliss, and Cahill, 1969

1969: Branched chain and aromatic amino acids are elevated in obese humans.

- . .
- •
- •

2005: Animal models

Koves et al., 2005, 2008

1969: Branched chain and aromatic amino acids are elevated in obese humans.

2005: Animal models

2009: Advanced metabolomics

High-fat

High-fat/BCAA

Standard chow

High-fat/BCAA → *insulin resistant*

High-fat/BCAA → *insulin resistant*

Standard chow + BCAA \rightarrow normal

High-fat/BCAA → *insulin resistant*

Standard chow + BCAA \rightarrow normal

High-fat \rightarrow normal

(Similar energy intake, similar weight changes)

BCAAs interfere with fat metabolism → linked to insulin resistance (probably also glucose metabolism..)

Hypothesis

BCAA related to insulin resistance?

Hypothesis

Reproduced in 5 studies:

Huffman et al., 2009: Different BMI rangesTai et al., 2010: Different ethicitiesShah et al., 2010: Cardiovascular diseaseFramingham cohort: Protein intake unimportantHerman et al 2010: Adipose tissue important

Hypothesis

BCAAs and related metabolites

Are strongly associated with insulin resistance and type 2 diabetes (Newgard, et al. *Cell Metabolism* 9: 311, 2009; Huffman, et al. *Diabetes Care* 32: 1678, 2009; Tai, E., et al. *Diabetologia* 53: 757, 2010)

Are prognostic for intervention outcomes (Shah, Svetkey, et al, Diabetologia 55: 321, 2011)

Are prognostic for development of type 2 diabetes (Wang, et al. Nature Med. 17: 448, 2011; Palmer, et al. JCEM 100: E463, 2015)

Are highly responsive to the most efficacious intervention methods (Laferrere, Svetkey, Newgard, et al. *Science Trans. Med* 3: 80r2e, 2011; Hsiao, et al. *Am. J. Physiol.* 300: E164, 2010; Khoo, et al. *Ann. Surgery* 259: 687, 2014; Glynn, et al. *Diabetologia* 58: 2324, 2015)

Hypothesis

Not weight loss, BUT BCAA AND RELATED METABOLITES

Factor	Description	F value	Unadjusted p value	Adjusted <i>p</i> value ^{<i>a</i>}	Effect size (95% CI) ^b
1	Medium-chain acylcarnitines	0.08	0.78	NS	-0.022 (-0.175, 0.131)
2	Medium-chain dicarboxyl-acylcarnitines	1.96	0.16	NS	-0 109 (-0 262 0 044)
3	BCAA-related	47.82	<0.0001	<0.0001	-0.513 (-0.659, -0.367)
4		1.12	0.22		
5	Long-chain dicarboxyl-acylcarnitines	0.32	0.57	NS	-0.044 (-0.197, 0.109)
6	Medium-chain acylcarnitines	3.25	0.07	NS	-0.140 (-0.293, 0.013)
7	Medium-chain acylcarnitines	0.19	0.66	NS	-0.034 (-0.187, 0.119)
8	Short-chain acylcarnitines	3.08	0.08	NS	-0.136 (-0.288, 0.016)
9	Long-chain acylcarnitines	2.06	0.15	NS	0.111 (-0.041, 0.264)
10	Amino acids	4.17	0.04	NS	0.158 (0.006, 0.310)
11	Urea cycle	3.03	0.08	NS	0.135 (-0.018, 0.288)
12	Miscellaneous	0.82	0.37	NS	0.070 (-0.082, 0.223)
13	Miscellaneous	0.11	0.74	NS	0.027 (-0.129, 0.182)

Hypothesis

Large body of indications of a role for BCAAs in insulin resistance

Hypothesis

Proof of concept

Hypothesis

Proof of concept

Flipping the coin:

Does BCAA *restriction* improve insulin sensitivity?

Hypothesis

Proof of concept

White et al., 2016

Hypothesis

Proof of concept

D

20

0

40

Time after tracer bolus (min)

60

White et al., 2016

1015203045

Time after tracer bolus (min)

2

5
Hypothesis

Proof of concept

Reduced BCAA increased insulin sensitivity In muscle

Hypothesis

Proof of concept

Reduced BCAA increased insulin sensitivity In muscle

White et al., 2016

Does BCAA restriction improve insulin resistance?

(Possibly by interacting with fat/glucose metabolism, no data..)

White et al., 2016

Hypothesis

Proof of concept

Increased levels of BCAA is "bad" Decreased levels of BCAA is "good"

So, first question:

What causes BCAA to rise in human metabolic diseases?

Hypothesis

Proof of concept

Essential amino acids

Shah et al., 2011

Molecular signatures Animal models Human data

Hypothesis

Proof of concept

Transplanted feces from obese to lean: increased BCAA Reduced insulin sensitivity

Hypothesis

Proof of concept

Essential amino acids

Intake from food

Molecular signatures Animal models Human data

Hypothesis

Proof of concept

Essential amino acids

Reduced adipose tissue BCAA catabolism in obesity

Sears et al., 2009, Hsiao et al., 2011

Hypothesis

Hypothesis

Hypothesis

Hypothesis

Anaplerosis: BCKAs entering the TCA cycle, competing for the capacity of using Acetyl-CoA from glycolysis.

Anaplerosis: BCKAs entering the TCA cycle, competing for the capacity of using Acetyl-CoA from glycolysis.

MyoGlu study: exercise trail and cell cultures

Control men:

F-glucose <5.6 mmol/L and 2 h glucose <7.8 mmol/L and BMI 19-25

Two groups (13 vs. 13)

Pre-diabetic men: F-glucose ≥5.6 mmol/L and/or 2 h glucose ≥7.8 mmol/L and BMI 27-32

MyoGlu study: exercise trail and cell cultures

Control men:

F-glucose <5.6 mmol/L and 2 h glucose <7.8 mmol/L and BMI 19-25

Two groups (13 vs. 13)

Pre-diabetic men: F-glucose \geq 5.6 mmol/L and/or 2 h glucose ≥7.8 mmol/L and BMI 27-32

Skeletal muscle and adipose tissue biopsies

Global RNA sequencing

Pathway analyses

Top 10 down-regulated pathways in pre-diabetes

Adiposetissue	Regulation	<i>P</i> -values	FDR
hsa00280 Valine, leucine and isoleucine degradation	Down	0,000	0,000
hsa00020 Citrate cycle (TCA cycle)	Down	0,000	0,000
hsa00640 Propanoate metabolism	Down	0,000	0,000
hsa00071 Fatty acid metabolism	Down	0,000	0,008
hsa01040 Biosynthesis of unsaturated fatty acids	Down	0,000	0,016
hsa04740 Olfactory transduction	Down	0,001	0,016
hsa04975 Fat digestion and absorption	Down	0,001	0,019
hsa03013 RNA transport	Down	0,001	0,027
hsa00650 Butanoate metabolism	Down	0,002	0,028
hsa04910 Insulin signaling pathway	Down	0,002	0,041
Skeletal muscle			
hsa03013 RNA transport	Down	0,000	0,003
hsa00280 Valine, leucine and isoleucine degradation	Down	0,000	0,003
hsa00640 Propanoate metabolism	Down	0,000	0,014
hsa00190 Oxidative phosphorylation	Down	0,001	0,027
hsa03010 Ribosome	Down	0,001	0,030
hsa03018 RNA degradation	Down	0,002	0,044
hsa03015 mRNA surveillance pathway	Down	0,002	0,044
hsa03040 Spliceosome	Down	0,002	0,046
hsa03060 Protein export	Down	0,004	0,065
hsa00970 Aminoacyl-tRNA biosynthesis	Down	0,004	0,065

Top 10 down-regulated pathways in pre-diabetes

Adiposetissue	Regulation	<i>P</i> -values	FDR
hsa00280 Valine, leucine and isoleucine degradation	Down	0,000	0,000
hsa00020 Citrate cycle (TCA cycle)	Down	0,000	0,000
hsa00640 Propanoate metabolism	Down	0,000	0,000
hsa00071 Fatty acid metabolism	Down	0,000	0,008
hsa01040 Biosynthesis of unsaturated fatty acids	Down	0,000	0,016
hsa04740 Olfactory transduction	Down	0,001	0,016
hsa04975 Fat digestion and absorption	Down	0,001	0,019
hsa03013 RNA transport	Down	0,001	0,027
hsa00650 Butanoate metabolism	Down	0,002	0,028
hsa04910 Insulin signaling pathway	Down	0,002	0,041
Skeletal muscle			
hsa03013 RNA transport	Down	0,000	0,003
hsa00280 Valine, leucine and isoleucine degradation	Down	0,000	0,003
hsa00640 Propanoate metabolism	Down	0,000	0,014
hsa00190 Oxidative phosphorylation	Down	0,001	0,027
hsa03010 Ribosome	Down	0,001	0,030
hsa03018 RNA degradation	Down	0,002	0,044
hsa03015 mRNA surveillance pathway	Down	0,002	0,044
hsa03040 Spliceosome	Down	0,002	0,046
hsa03060 Protein export	Down	0,004	0,065
hsa00970 Aminoacyl-tRNA biosynthesis	Down	0,004	0,065

AT & SkM BCAA catabolism correlates with insulin sensitivity

HEC = hyperinsulinemic euglycemic clamp

Blood plasma BCAA concentration

Why elevated plasma BCAA concentrations?

Adipose tissue, not skeletal muscle BCAA catabolism, influences plasma BCAA levels?

Wiklund et al 2016 Guilherme et al 2008 Kahn et al 2006

Why elevated plasma BCAA concentrations?

Why elevated plasma BCAA concentrations?

Sunny et al 2016

Consequences of elevated plasma BCAA concentrations

HEC = hyperinsulinemic euglycemic clamp

Plasma BCAAs, not FFAs, as an early marker of insulin resistance?

Testing if BCAA influences glucose oxidation in cell culture of myotubes.

Skeletal muscle

BCAA uptake BCAA → BCKA transamination BCKA catabolism Anaplerosis of TCA cycle

Mattic et al, 2013

Mattic et al, 2013

Mattic et al, 2013

Data on KEGG graph Rendered by Pathview Not only in SkM, also in liver?

BCKA

Skeletal muscle Skeletal muscle Limited data, but consistent with non-alcoholic fatty liver disease BCKA and insulin resistance

12wk exercise

Increased insulin sensitivity by long-term exercise Circulating BCAAs predicted change in insulin sensitivity

In line with other studies:

Are prognostic for intervention outcomes (Shah, Svetkey, et al, Diabetologia 55: 321, 2011)

Are prognostic for development of type 2 diabetes (Wang, et al. Nature Med. 17: 448, 2011; Palmer, et al. JCEM 100: E463, 2015)

Summary

- 1. Increased plasma BCAA (not FFA) concentrations in pre-diabetes
 - 1. Vicious cycle: Reduced BCAA catabolism and increased insulin
- 2. BCAA interferes with glucose oxidation
 - Increased BCAA transamination and reduced BCKA catabolism in tissues, BCKA overflow → anaplerosis → reduced glucose oxidation?
- 3. Plasma BCAA predicted the change in insulin sensitivity with 12wk exercise

Plans for the future

Tissue measurements of BCAA and BCKA levels in vivo

BCKA in plasma in vivo

Measure enzyme activity, not only mRNA expression

In vitro studies on other types of cells (hepatocytes, adipocytes), BCAA+insulin pathway experiments ++

Gut bacteria, BCAA and exercise?
Thank you!!

PhDs/postdocs/researchers

- <u>Christian A. Drevon (Professor)</u>
- Ingrid MF Gjelstad
- Kenneth Strømmen
- Elin Blakstad
- Astrid N. Almås
- Sissel Moltu
- Fred Haugen
- Frode Norheim
- Torgrim Langleite
- Marit Hjort
- Torgeir Holen
- Kristin Eckardt
- Sindre Lee
- Shirin Pourteymour
- Kathrine Vinknes
- Thomas Olsen
- Helga Refsum

External collaborators

- Arild C. Rustan; fatty acid biology
- Jørgen Jensen; physical activity
- Kåre I. Birkeland/Hanne L. Gulseth
- Bernd Thiede; proteomics
- Per K. Hol et al. MRI
- Per O. Iversen, Ola D. Saugstad, Britt Nakstad, Arild Rønnestad; neonatology
- Jens P. Berg; MR metabolomics
- Thomas E. Gundersen, Vitas; lipidomics
- Willem de Vos; microbiome
- NuGO, B van Ommen, H Daniel, Robert Caesar
- Food4Me, The Gibneys et al
- NutriTech, B van Ommen et al
- MyoGlu, Birkeland et al; endocrinology
- Lifebrain, Kristine Walhovd/ Anders Fjell

Is increased plasma BCAA concentrations a "symptom" or "cause" of T2D?

Send answer to: sindre.lee@medisin.uio.no

Extra slides...

Acute exercise

Acute exercise

Essential amino acids (must check FFQs..)

Adjustment for cofounders?

Underpowered study....

Insulin, glucose, ectopic fat ++

Newgard et al 2012 Sunny et al 2016 Gougeon et al 2008

Why elevated plasma BCAA concentrations?

BCAA catabolism correlates with TCA cycle mRNA

BCAA responses to exercise

